Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies

Author:

Zitzmann Carolin,Dächert ChristopherORCID,Schmid Bianca,van der Schaar Hilde,van Hemert Martijn,Perelson Alan S.ORCID,van Kuppeveld Frank J. M.,Bartenschlager Ralf,Binder Marco,Kaderali LarsORCID

Abstract

Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called “replication factories”), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and showed that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency, which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, such as polyprotein cleavage and viral RNA synthesis, may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the in vitro viral replication early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

US Department of Energy

National Institute of Health

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference156 articles.

1. COVID-19 outbreak: An overview.;M Ciotti;Chemotherapy,2020

2. WHO coronavirus (COVID-19) dashboard with vaccination data.;World Health Organization;In: WHO [Internet].,2021

3. The COVID-19 pandemic and the $16 trillion virus.;DM Cutler,2020

4. The global economic burden of dengue: a systematic analysis;DS Shepard;Lancet Infect Dis,2016

5. A socio-economic impact assessment of the Zika virus in Latin America and the Caribbean.;United Nations,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3