Learning the statistics and landscape of somatic mutation-induced insertions and deletions in antibodies

Author:

Lupo CosimoORCID,Spisak NatanaelORCID,Walczak Aleksandra M.ORCID,Mora ThierryORCID

Abstract

Affinity maturation is crucial for improving the binding affinity of antibodies to antigens. This process is mainly driven by point substitutions caused by somatic hypermutations of the immunoglobulin gene. It also includes deletions and insertions of genomic material known as indels. While the landscape of point substitutions has been extensively studied, a detailed statistical description of indels is still lacking. Here we present a probabilistic inference tool to learn the statistics of indels from repertoire sequencing data, which overcomes the pitfalls and biases of standard annotation methods. The model includes antibody-specific maturation ages to account for variable mutational loads in the repertoire. After validation on synthetic data, we applied our tool to a large dataset of human immunoglobulin heavy chains. The inferred model allows us to identify universal statistical features of indels in heavy chains. We report distinct insertion and deletion hotspots, and show that the distribution of lengths of indels follows a geometric distribution, which puts constraints on future mechanistic models of the hypermutation process.

Funder

H2020 European Research Council

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference61 articles.

1. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions;N Hozumi;Proc Natl Acad Sci,1976

2. Measurement and Clinical Monitoring of Human Lymphocyte Clonality by Massively Parallel V-D-J Pyrosequencing;SD Boyd;Sci Transl Med,2009

3. Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire;J Glanville;Proc Natl Acad Sci,2009

4. Shaping of Human Germline IgH Repertoires Revealed by Deep Sequencing;K Larimore;J Immunol,2012

5. Inferring processes underlying B-cell repertoire diversity;Y Elhanati;Philos Trans R Soc B Biol Sci,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3