Can antibody conjugated nanomicelles alter the prospect of antibody targeted therapy against schistosomiasis mansoni?

Author:

Amer Eglal I.,Allam Sonia R.,Hassan Aceel Y.ORCID,El-Fakharany Esmail M.,Agwa Mona M.,Khattab Sherine N.,Sheta Eman,El-Faham Marwa H.

Abstract

Background CLA (conjugated linoleic acid)-mediated activation of the schistosome tegument-associated sphingomyelinase and consequent disruption of the outer membrane might allow host antibodies to access the apical membrane antigens. Here, we investigated a novel approach to enhance specific antibody delivery to concealed surface membrane antigens of Schistosoma mansoni utilising antibody-conjugated-CLA nanomicelle technology. Methodology/Principal findings We invented and characterised an amphiphilic CLA-loaded whey protein co-polymer (CLA-W) as an IV injectable protein nanocarrier. Rabbit anti-Schistosoma mansoni infection (anti-SmI) and anti-Schistosoma mansoni alkaline phosphatase specific IgG antibodies were purified from rabbit sera and conjugated to the surface of CLA-W co-polymer to form antibody-conjugated-CLA-W nanomicelles (Ab-CLA-W). We investigated the schistosomicidal effects of CLA-W and Ab-CLA-W in a mouse model of Schistosoma mansoni against early and late stages of infection. Results showed that conjugation of nanomicelles with antibodies, namely anti-SmI, significantly enhanced the micelles’ schistosomicidal and anti-pathology activities at both the schistosomula and adult worm stages of the infection resulting in 64.6%-89.9% reductions in worm number; 72.5–94% and 66.4–85.2% reductions in hepatic eggs and granulomas, respectively. Treatment induced overall improvement in liver histopathology, reducing granuloma size and fibrosis and significantly affecting egg viability. Indirect immunofluorescence confirmed CLA-W-mediated antigen exposure on the worm surface. Electron microscopy revealed extensive ultrastructural damage in worm tegument induced by anti-SmI-CLA-W. Conclusion/Significance The novel antibody-targeted nano-sized CLA delivery system offers great promise for treatment of Schistosoma mansoni infection and control of its transmission. Our in vivo observations confirm an immune-mediated enhanced effect of the schistosomicidal action of CLA and hints at the prospect of nanotechnology-based immunotherapy, not only for schistosomiasis, but also for other parasitic infections in which chemotherapy has been shown to be immune-dependent. The results propose that the immunodominant reactivity of the anti-SmI serum, Schistosoma mansoni fructose biphosphate aldolase, SmFBPA, merits serious attention as a therapeutic and vaccine candidate.

Publisher

Public Library of Science (PLoS)

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3