Abstract
Background
After the unprecedented Zika virus (ZIKV) outbreak in the western hemisphere from 2015–2018, Aedes aegypti and Ae. albopictus are now well established primary and secondary ZIKV vectors, respectively. Consensus about identification and importance of other secondary ZIKV vectors remain. This systematic review aims to provide a list of vector species capable of transmitting ZIKV by reviewing evidence from laboratory vector competence (VC) studies and to identify key knowledge gaps and issues within the ZIKV VC literature.
Methods
A search was performed until 15th March 2022 on the Cochrane Library, Lilacs, PubMed, Web of Science, WHOLIS and Google Scholar. The search strings included three general categories: 1) “ZIKA”; 2) “vector”; 3) “competence”, “transmission”, “isolation”, or “feeding behavior” and their combinations. Inclusion and exclusion criteria has been predefined and quality of included articles was assessed by STROBE and STROME-ID criteria.
Findings
From 8,986 articles retrieved, 2,349 non-duplicates were screened by title and abstracts,103 evaluated using the full text, and 45 included in this analysis. Main findings are 1) secondary vectors of interest include Ae. japonicus, Ae. detritus, and Ae. vexans at higher temperature 2) Culex quinquefasciatus was not found to be a competent vector of ZIKV, 3) considerable heterogeneity in VC, depending on the local mosquito strain and virus used in testing was observed. Critical issues or gaps identified included 1) inconsistent definitions of VC parameters across the literature; 2) equivalency of using different mosquito body parts to evaluate VC parameters for infection (mosquito bodies versus midguts), dissemination (heads, legs or wings versus salivary glands), and transmission (detection or virus amplification in saliva, FTA cards, transmission to neonatal mice); 3) articles that fail to use infectious virus assays to confirm the presence of live virus; 4) need for more studies using murine models with immunocompromised mice to infect mosquitoes.
Conclusion
Recent, large collaborative multi-country projects to conduct large scale evaluations of specific mosquito species represent the most appropriate approach to establish VC of mosquito species.
Funder
TDR
LIFE CONOPS
Division of Intramural Research, National Institute of Allergy and Infectious Diseases
Publisher
Public Library of Science (PLoS)
Subject
Infectious Diseases,Public Health, Environmental and Occupational Health
Reference87 articles.
1. WHO statement on the first meeting of the International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations [Internet]. [cited 2022 Dec 3]. https://www.who.int/news/item/01-02-2016-who-statement-on-the-first-meeting-of-the-international-health-regulations-(2005)-(ihr-2005)-emergency-committee-on-zika-virus-and-observed-increase-in-neurological-disorders-and-neonatal-malformations.
2. WHO statement: Fifth meeting of the Emergency Committee under the International Health Regulations (2005) regarding microcephaly, other neurological disorders and Zika virus [Internet]. [cited 2022 Dec 3]. https://www.who.int/news/item/18-11-2016-fifth-meeting-of-the-emergency-committee-under-the-international-health-regulations-(2005)-regarding-microcephaly-other-neurological-disorders-and-zika-virus.
3. Scoping review of the Zika virus literature;LA Waddell;PLoS One,2016
4. Zika virus: An updated review of competent or naturally infected mosquitoes;Y Epelboin;PLoS Negl Trop Dis,2017
5. An overview of mosquito vectors of Zika virus;S Boyer;Microbes Infect,2018
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献