Functional analysis of ADARs in planarians supports a bilaterian ancestral role in suppressing double-stranded RNA-response

Author:

Bar Yaacov DanORCID

Abstract

ADARs (adenosine deaminases acting on RNA) are known for their adenosine-to-inosine RNA editing activity, and most recently, for their role in preventing aberrant dsRNA-response by activation of dsRNA sensors (i.e., RIG-I-like receptor homologs). However, it is still unclear whether suppressing spurious dsRNA-response represents the ancestral role of ADARs in bilaterians. As a first step to address this question, we identified ADAR1 and ADAR2 homologs in the planarian Schmidtea mediterranea, which is evolutionarily distant from canonical lab models (e.g., flies and nematodes). Our results indicate that knockdown of either planarian adar1 or adar2 by RNA interference (RNAi) resulted in upregulation of dsRNA-response genes, including three planarian rig-I-like receptor (prlr) homologs. Furthermore, independent knockdown of adar1 and adar2 reduced the number of infected cells with a dsRNA virus, suggesting they suppress a bona fide anti-viral dsRNA-response activity. Knockdown of adar1 also resulted in lesion formation and animal lethality, thus attesting to its essentiality. Simultaneous knockdown of adar1 and prlr1 rescued adar1(RNAi)-dependent animal lethality and rescued the dsRNA-response, suggesting that it contributes to the deleterious effect of adar1 knockdown. Finally, we found that ADAR2, but not ADAR1, mediates mRNA editing in planarians, suggesting at least in part non-redundant activities for planarians ADARs. Our results underline the essential role of ADARs in suppressing activation of harmful dsRNA-response in planarians, thus supporting it as their ancestral role in bilaterians. Our work also set the stage to study further and better understand the regulatory mechanisms governing anti-viral dsRNA-responses from an evolutionary standpoint using planarians as a model.

Funder

Gruss-Lipper Family Foundation

Ben-Gurion University of the Negev

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3