Progeny counter mechanism in malaria parasites is linked to extracellular resources
-
Published:2023-12-05
Issue:12
Volume:19
Page:e1011807
-
ISSN:1553-7374
-
Container-title:PLOS Pathogens
-
language:en
-
Short-container-title:PLoS Pathog
Author:
Stürmer Vanessa S.,
Stopper Sophie,
Binder Patrick,
Klemmer Anja,
Lichti Nicolas P.,
Becker Nils B.,
Guizetti JulienORCID
Abstract
Malaria is caused by the rapid proliferation of Plasmodium parasites in patients and disease severity correlates with the number of infected red blood cells in circulation. Parasite multiplication within red blood cells is called schizogony and occurs through an atypical multinucleated cell division mode. The mechanisms regulating the number of daughter cells produced by a single progenitor are poorly understood. We investigated underlying regulatory principles by quantifying nuclear multiplication dynamics in Plasmodium falciparum and knowlesi using super-resolution time-lapse microscopy. This confirmed that the number of daughter cells was consistent with a model in which a counter mechanism regulates multiplication yet incompatible with a timer mechanism. P. falciparum cell volume at the start of nuclear division correlated with the final number of daughter cells. As schizogony progressed, the nucleocytoplasmic volume ratio, which has been found to be constant in all eukaryotes characterized so far, increased significantly, possibly to accommodate the exponentially multiplying nuclei. Depleting nutrients by dilution of culture medium caused parasites to produce fewer merozoites and reduced proliferation but did not affect cell volume or total nuclear volume at the end of schizogony. Our findings suggest that the counter mechanism implicated in malaria parasite proliferation integrates extracellular resource status to modify progeny number during blood stage infection.
Funder
Deutsche Forschungsgemeinschaft
Human Frontier Science Program
Daimler und Benz Stiftung
Chica and Heinz Schaller Foundation
Publisher
Public Library of Science (PLoS)
Subject
Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献