A unique NLRC4 receptor from echinoderms mediates Vibrio phagocytosis via rearrangement of the cytoskeleton and polymerization of F-actin

Author:

Chen KaiyuORCID,Zhang Siyuan,Shao Yina,Guo Ming,Zhang Weiwei,Li ChenghuaORCID

Abstract

Many members of the nucleotide-binding and oligomerization domain (NACHT)- and leucine-rich-repeat-containing protein (NLR) family play crucial roles in pathogen recognition and innate immune response regulation. In our previous work, a unique and Vibrio splendidus-inducible NLRC4 receptor comprising Ig and NACHT domains was identified from the sea cucumber Apostichopus japonicus, and this receptor lacked the CARD and LRR domains that are typical of common cytoplasmic NLRs. To better understand the functional role of AjNLRC4, we confirmed that AjNLRC4 was a bona fide membrane PRR with two transmembrane structures. AjNLRC4 was able to directly bind microbes and polysaccharides via its extracellular Ig domain and agglutinate a variety of microbes in a Ca2+-dependent manner. Knockdown of AjNLRC4 by RNA interference and blockade of AjNLRC4 by antibodies in coelomocytes both could significantly inhibit the phagocytic activity and elimination of V. splendidus. Conversely, overexpression of AjNLRC4 enhanced the phagocytic activity of V. splendidus, and this effect could be specifically blocked by treatment with the actin-mediated endocytosis inhibitor cytochalasin D but not other endocytosis inhibitors. Moreover, AjNLRC4-mediated phagocytic activity was dependent on the interaction between the intracellular domain of AjNLRC4 and the β-actin protein and further regulated the Arp2/3 complex to mediate the rearrangement of the cytoskeleton and the polymerization of F-actin. V. splendidus was found to be colocalized with lysosomes in coelomocytes, and the bacterial quantities were increased after injection of chloroquine, a lysosome inhibitor. Collectively, these results suggested that AjNLRC4 served as a novel membrane PRR in mediating coelomocyte phagocytosis and further clearing intracellular Vibrio through the AjNLRC4-β-actin-Arp2/3 complex-lysosome pathway.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

K.C. Wong Magna Fund in Ningbo University

Publisher

Public Library of Science (PLoS)

Subject

Virology,Genetics,Molecular Biology,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3