Cortical asymmetries at different spatial hierarchies relate to phonological processing ability

Author:

Eckert Mark A.ORCID,Vaden Kenneth I.ORCID,Iuricich FedericoORCID,

Abstract

The ability to map speech sounds to corresponding letters is critical for establishing proficient reading. People vary in this phonological processing ability, which has been hypothesized to result from variation in hemispheric asymmetries within brain regions that support language. A cerebral lateralization hypothesis predicts that more asymmetric brain structures facilitate the development of foundational reading skills like phonological processing. That is, structural asymmetries are predicted to linearly increase with ability. In contrast, a canalization hypothesis predicts that asymmetries constrain behavioral performance within a normal range. That is, structural asymmetries are predicted to quadratically relate to phonological processing, with average phonological processing occurring in people with the most asymmetric structures. These predictions were examined in relatively large samples of children (N = 424) and adults (N = 300), using a topological asymmetry analysis of T1-weighted brain images and a decoding measure of phonological processing. There was limited evidence of structural asymmetry and phonological decoding associations in classic language-related brain regions. However, and in modest support of the cerebral lateralization hypothesis, small to medium effect sizes were observed where phonological decoding accuracy increased with the magnitude of the largest structural asymmetry across left hemisphere cortical regions, but not right hemisphere cortical regions, for both the adult and pediatric samples. In support of the canalization hypothesis, small to medium effect sizes were observed where phonological decoding in the normal range was associated with increased asymmetries in specific cortical regions for both the adult and pediatric samples, which included performance monitoring and motor planning brain regions that contribute to oral and written language functions. Thus, the relevance of each hypothesis to phonological decoding may depend on the scale of brain organization.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Center for Research Resources

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3