Accurate classification of major brain cell types using in vivo imaging and neural network processing

Author:

Das Gupta Amrita,Asan Livia,John Jennifer,Beretta Carlo,Kuner Thomas,Knabbe JohannesORCID

Abstract

Comprehensive analysis of tissue cell type composition using microscopic techniques has primarily been confined to ex vivo approaches. Here, we introduce NuCLear (Nucleus-instructed tissue composition using deep learning), an approach combining in vivo two-photon imaging of histone 2B-eGFP-labeled cell nuclei with subsequent deep learning-based identification of cell types from structural features of the respective cell nuclei. Using NuCLear, we were able to classify almost all cells per imaging volume in the secondary motor cortex of the mouse brain (0.25 mm3 containing approximately 25,000 cells) and to identify their position in 3D space in a noninvasive manner using only a single label throughout multiple imaging sessions. Twelve weeks after baseline, cell numbers did not change yet astrocytic nuclei significantly decreased in size. NuCLear opens a window to study changes in relative density and location of different cell types in the brains of individual mice over extended time periods, enabling comprehensive studies of changes in cell type composition in physiological and pathophysiological conditions.

Funder

Deutsche Forschungsgemeinschaft

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3