Budgerigars have complex sleep structure similar to that of mammals

Author:

Canavan Sofija V.ORCID,Margoliash DanielORCID

Abstract

Birds and mammals share specialized forms of sleep including slow wave sleep (SWS) and rapid eye movement sleep (REM), raising the question of why and how specialized sleep evolved. Extensive prior studies concluded that avian sleep lacked many features characteristic of mammalian sleep, and therefore that specialized sleep must have evolved independently in birds and mammals. This has been challenged by evidence of more complex sleep in multiple songbird species. To extend this analysis beyond songbirds, we examined a species of parrot, the sister taxon to songbirds. We implanted adult budgerigars (Melopsittacus undulatus) with electroencephalogram (EEG) and electrooculogram (EOG) electrodes to evaluate sleep architecture, and video monitored birds during sleep. Sleep was scored with manual and automated techniques, including automated detection of slow waves and eye movements. This can help define a new standard for how to score sleep in birds. Budgerigars exhibited consolidated sleep, a pattern also observed in songbirds, and many mammalian species, including humans. We found that REM constituted 26.5% of total sleep, comparable to humans and an order of magnitude greater than previously reported. Although we observed no spindles, we found a clear state of intermediate sleep (IS) similar to non-REM (NREM) stage 2. Across the night, SWS decreased and REM increased, as observed in mammals and songbirds. Slow wave activity (SWA) fluctuated with a 29-min ultradian rhythm, indicating a tendency to move systematically through sleep states as observed in other species with consolidated sleep. These results are at variance with numerous older sleep studies, including for budgerigars. Here, we demonstrated that lighting conditions used in the prior budgerigar study—and commonly used in older bird studies—dramatically disrupted budgerigar sleep structure, explaining the prior results. Thus, it is likely that more complex sleep has been overlooked in a broad range of bird species. The similarities in sleep architecture observed in mammals, songbirds, and now budgerigars, alongside recent work in reptiles and basal birds, provide support for the hypothesis that a common amniote ancestor possessed the precursors that gave rise to REM and SWS at one or more loci in the parallel evolution of sleep in higher vertebrates. We discuss this hypothesis in terms of the common plan of forebrain organization shared by reptiles, birds, and mammals.

Funder

National Institute on Deafness and Other Communication Disorders

National Institute of Mental Health

National Institute of General Medical Sciences

Publisher

Public Library of Science (PLoS)

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Reference131 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3