Performance of Generative Pretrained Transformer on the National Medical Licensing Examination in Japan

Author:

Tanaka YudaiORCID,Nakata TakutoORCID,Aiga Ko,Etani TakahideORCID,Muramatsu RyotaORCID,Katagiri Shun,Kawai Hiroyuki,Higashino Fumiya,Enomoto Masahiro,Noda MasaoORCID,Kometani MitsuhiroORCID,Takamura MasayukiORCID,Yoneda TakashiORCID,Kakizaki Hiroaki,Nomura AkihiroORCID

Abstract

The remarkable performance of ChatGPT, launched in November 2022, has significantly impacted the field of natural language processing, inspiring the application of large language models as supportive tools in clinical practice and research worldwide. Although GPT-3.5 recently scored high on the United States Medical Licensing Examination, its performance on medical licensing examinations of other nations, especially non-English speaking nations, has not been sufficiently evaluated. This study assessed GPT’s performance on the National Medical Licensing Examination (NMLE) in Japan and compared it with the actual minimal passing rate for this exam. In particular, the performances of both the GPT-3.5 and GPT-4 models were considered for the comparative analysis. We initially used the GPT models and several prompts for 290 questions without image data from the 116th NMLE (held in February 2022 in Japan) to maximize the performance for delivering correct answers and explanations of the questions. Thereafter, we tested the performance of the best GPT model (GPT-4) with optimized prompts on a dataset of 262 questions without images from the latest 117th NMLE (held in February 2023). The best model with the optimized prompts scored 82.7% for the essential questions and 77.2% for the basic and clinical questions, both of which sufficed the minimum passing scoring rates of 80.0% and 74.6%, respectively. After an exploratory analysis of 56 incorrect answers from the model, we identified the three major factors contributing to the generation of the incorrect answers—insufficient medical knowledge, information on Japan-specific medical system and guidelines, and mathematical errors. In conclusion, GPT-4 with our optimized prompts achieved a minimum passing scoring rate in the latest 117th NMLE in Japan. Beyond its original design of answering examination questions for humans, these artificial intelligence (AI) models can serve as one of the best “sidekicks” for solving problems and addressing the unmet needs in the medical and healthcare fields.

Publisher

Public Library of Science (PLoS)

Reference30 articles.

1. Artificial Intelligence and Machine Learning in Clinical Medicine, 2023;CJ Haug;N Engl J Med,2023

2. Artificial Intelligence in Current Diabetes Management and Prediction.;A Nomura;Curr Diab Rep,2021

3. Natural Language Processing: from Bedside to Everywhere.;E Aramaki;Yearb Med Inform.,2022

4. Natural language processing: state of the art, current trends and challenges.;D Khurana;Multimed Tools Appl,2023

5. Attention is all you need;A Vaswani;Advances in neural information processing systems,2017

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3