Point-of-care motion capture and biomechanical assessment improve clinical utility of dynamic balance testing for lower extremity osteoarthritis

Author:

Halvorson Ryan T.ORCID,Castillo Francine T.,Ahamed Fayyaz,Khattab Karim,Scheffler Aaron,Matthew Robert P.,Lotz Jeffrey,Vail Thomas P.,Feeley Brian T.,Bailey Jeannie F.

Abstract

Musculoskeletal conditions impede patient biomechanical function. However, clinicians rely on subjective functional assessments with poor test characteristics for biomechanical outcomes because more advanced assessments are impractical in the ambulatory care setting. Using markerless motion capture (MMC) in clinic to record time-series joint position data, we implemented a spatiotemporal assessment of patient kinematics during lower extremity functional testing to evaluate whether kinematic models could identify disease states beyond conventional clinical scoring. 213 trials of the star excursion balance test (SEBT) were recorded by 36 subjects during routine ambulatory clinic visits using both MMC technology and conventional clinician scoring. Conventional clinical scoring failed to distinguish patients with symptomatic lower extremity osteoarthritis (OA) from healthy controls in each component of the assessment. However, principal component analysis of shape models generated from MMC recordings revealed significant differences in subject posture between the OA and control cohorts for six of the eight components. Additionally, time-series models of subject posture change over time revealed distinct movement patterns and reduced overall postural change in the OA cohort compared to the controls. Finally, a novel metric quantifying postural control was derived from subject specific kinematic models and was shown to distinguish OA (1.69), asymptomatic postoperative (1.27), and control (1.23) cohorts (p = 0.0025) and to correlate with patient-reported OA symptom severity (R = -0.72, p = 0.018). Time series motion data have superior discriminative validity and clinical utility than conventional functional assessments in the case of the SEBT. Novel spatiotemporal assessment approaches can enable routine in-clinic collection of objective patient-specific biomechanical data for clinical decision-making and monitoring recovery.

Publisher

Public Library of Science (PLoS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3