Optimal mode of delivery in pregnancy: Individualized predictions using national vital statistics data

Author:

Schulz Karl W.ORCID,Gaither Kelly,Zigler Corwin,Urban Tomislav,Drake Justin,Bukowski Radek

Abstract

Child birth via Cesarean section accounts for approximately 32% of all births each year in the United States. A variety of risk factors and complications can lead caregivers and patients to plan for a Cesarean delivery in advance before onset of labor. However, a non-trivial subset of Cesarean sections (∼25%) are unplanned and occur after an initial trial of labor is attempted. Unfortunately, patients who deliver via unplanned Cesarean sections have increased maternal morbidity and mortality rates and higher rates of neonatal intensive care admissions. In an effort to develop models aimed at improving health outcomes in labor and delivery, this work seeks to explore the use of national vital statistics data to quantify the likelihood of an unplanned Cesarean section based on 22 maternal characteristics. Machine learning techniques are used to ascertain influential features, train and evaluate models, and assess accuracy against available test data. Based on cross-validation results from a large training cohort (n = 6,530,467 births), the gradient-boosted tree algorithm was identified as the best performer and was evaluated on a large test cohort (n = 10,613,877 births) for two prediction scenarios. Area under the receiver operating characteristic curves of 0.77 or higher and recall scores of 0.78 or higher were obtained and the resulting models are well calibrated. Combined with feature importance analysis to explain why certain maternal characteristics lead to a specific prediction in individual patients, the developed analysis pipeline provides additional quantitative information to aid in the decision process on whether to plan for a Cesarean section in advance, a substantially safer option among women at a high risk of unplanned Cesarean delivery during labor.

Publisher

Public Library of Science (PLoS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3