A roadmap to reduce information inequities in disability with digital health and natural language processing

Author:

Newman-Griffis Denis R.ORCID,Hurwitz Max B.ORCID,McKernan Gina P.,Houtrow Amy J.,Dicianno Brad E.

Abstract

People with disabilities disproportionately experience negative health outcomes. Purposeful analysis of information on all aspects of the experience of disability across individuals and populations can guide interventions to reduce health inequities in care and outcomes. Such an analysis requires more holistic information on individual function, precursors and predictors, and environmental and personal factors than is systematically collected in current practice. We identify 3 key information barriers to more equitable information: (1) a lack of information on contextual factors that affect a person’s experience of function; (2) underemphasis of the patient’s voice, perspective, and goals in the electronic health record; and (3) a lack of standardized locations in the electronic health record to record observations of function and context. Through analysis of rehabilitation data, we have identified ways to mitigate these barriers through the development of digital health technologies to better capture and analyze information about the experience of function. We propose 3 directions for future research on using digital health technologies, particularly natural language processing (NLP), to facilitate capturing a more holistic picture of a patient’s unique experience: (1) analyzing existing information on function in free text documentation; (2) developing new NLP-driven methods to collect information on contextual factors; and (3) collecting and analyzing patient-reported descriptions of personal perceptions and goals. Multidisciplinary collaboration between rehabilitation experts and data scientists to advance these research directions will yield practical technologies to help reduce inequities and improve care for all populations.

Funder

U.S. National Library of Medicine

Publisher

Public Library of Science (PLoS)

Reference100 articles.

1. Global estimates of the need for rehabilitation based on the Global Burden of Disease study. A systematic analysis for the Global Burden of Disease Study 2019;A Cieza;Lancet,2019

2. The Impact of Disability and Social Determinants of Health on Condition-Specific Readmissions beyond Medicare Risk Adjustments: A Cohort Study;J Meddings;J Gen Intern Med,2017

3. Mortality risk associated with disability: a population-based record linkage study;IM Majer;Am J Public Health,2011

4. Multiple Chronic Conditions: Prevalence, Health Consequences, and Implications for Quality, Care Management, and Costs;C Vogeli;J Gen Intern Med,2007

5. Eliminating Health And Health Care Disparities Among The Growing Population Of People With Disabilities;LI Iezzoni;Health Affairs,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3