Explainable deep learning for disease activity prediction in chronic inflammatory joint diseases

Author:

Trottet CécileORCID,Allam Ahmed,Horvath Aron N.,Finckh AxelORCID,Hügle Thomas,Adler Sabine,Kyburz Diego,Micheroli Raphael,Krauthammer Michael,Ospelt Caroline

Abstract

Analysing complex diseases such as chronic inflammatory joint diseases (CIJDs), where many factors influence the disease evolution over time, is a challenging task. CIJDs are rheumatic diseases that cause the immune system to attack healthy organs, mainly the joints. Different environmental, genetic and demographic factors affect disease development and progression. The Swiss Clinical Quality Management in Rheumatic Diseases (SCQM) Foundation maintains a national database of CIJDs documenting the disease management over time for 19’267 patients. We propose the Disease Activity Score Network (DAS-Net), an explainable multi-task learning model trained on patients’ data with different arthritis subtypes, transforming longitudinal patient journeys into comparable representations and predicting multiple disease activity scores. First, we built a modular model composed of feed-forward neural networks, long short-term memory networks and attention layers to process the heterogeneous patient histories and predict future disease activity. Second, we investigated the utility of the model’s computed patient representations (latent embeddings) to identify patients with similar disease progression. Third, we enhanced the explainability of our model by analysing the impact of different patient characteristics on disease progression and contrasted our model outcomes with medical expert knowledge. To this end, we explored multiple feature attribution methods including SHAP, attention attribution and feature weighting using case-based similarity. Our model outperforms temporal and non-temporal neural network, tree-based, and naive static baselines in predicting future disease activity scores. To identify similar patients, a k-nearest neighbours regression algorithm applied to the model’s computed latent representations outperforms baseline strategies that use raw input features representation.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Public Library of Science (PLoS)

Reference35 articles.

1. Chronic inflammation and your joints—Harvard Health;. Available from: https://www.health.harvard.edu/pain/chronic-inflammation-and-your-joints.

2. An introduction to machine learning and analysis of its use in rheumatic diseases;KM Kingsmore;Nature Reviews Rheumatology,2021

3. Clinical quality management in rheumatoid arthritis: putting theory into practice;E Uitz;Rheumatology,2000

4. The DAS28 score | NRAS | Disease Activity Score;. Available from: https://nras.org.uk/resource/the-das28-score/.

5. ASDAS calculator—ASAS;. Available from: https://www.asas-group.org/instruments/asdas-calculator/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3