Towards artificial intelligence-based disease prediction algorithms that comprehensively leverage and continuously learn from real-world clinical tabular data systems

Author:

Lee-St. John Terrence J.ORCID,Kanwar OshinORCID,Abidi Emna,El Nekidy WasimORCID,Piechowski-Jozwiak BartlomiejORCID

Abstract

This manuscript presents a proof-of-concept for a generalizable strategy, the full algorithm, designed to estimate disease risk using real-world clinical tabular data systems, such as electronic health records (EHR) or claims databases. By integrating classic statistical methods and modern artificial intelligence techniques, this strategy automates the production of a disease prediction model that comprehensively reflects the dynamics contained within the underlying data system. Specifically, the full algorithm parses through every facet of the data (e.g., encounters, diagnoses, procedures, medications, labs, chief complaints, flowsheets, vital signs, demographics, etc.), selects which factors to retain as predictor variables by evaluating the data empirically against statistical criteria, structures and formats the retained data into time-series, trains a neural network-based prediction model, then subsequently applies this model to current patients to generate risk estimates. A distinguishing feature of the proposed strategy is that it produces a self-adaptive prediction system, capable of evolving the prediction mechanism in response to changes within the data: as newly collected data expand/modify the dataset organically, the prediction mechanism automatically evolves to reflect these changes. Moreover, the full algorithm operates without the need for a-priori data curation and aims to harness all informative risk and protective factors within the real-world data. This stands in contrast to traditional approaches, which often rely on highly curated datasets and domain expertise to build static prediction models based solely on well-known risk factors. As a proof-of-concept, we codified the full algorithm and tasked it with estimating 12-month risk of initial stroke or myocardial infarction using our hospital’s real-world EHR. A 66-month pseudo-prospective validation was conducted using records from 558,105 patients spanning April 2015 to September 2023, totalling 3,424,060 patient-months. Area under the receiver operating characteristic curve (AUROC) values ranged from .830 to .909, with an improving trend over time. Odds ratios describing model precision for patients 1–100 and 101–200 (when ranked by estimated risk) ranged from 15.3 to 48.1 and 7.2 to 45.0, respectively, with both groups showing improving trends over time. Findings suggest the feasibility of developing high-performing disease risk calculators in the proposed manner.

Publisher

Public Library of Science (PLoS)

Reference30 articles.

1. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: Prospective cohort study;J Hippisley-Cox;BMJ (Online).,2017

2. ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines;DC Goff;Circulation,2013

3. General Cardiovascular Risk Profile for Use in Primary Care;RB D’Agostino;Circulation [Internet].,2008

4. Cardiovascular disease: risk assessment and reduction, including lipid modification [NICE Clinical Guidelines, No. 181] [Internet].;National Institute for Health and Care Excellence (NICE).,2016

5. Lipid Modification: Cardiovascular Risk Assessment and the Modification of Blood Lipids for the Primary and Secondary Prevention of Cardiovascular Disease [NICE Clinical Guidelines, No. 181] [Internet].;National Clinical Guideline Centre (UK).,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3