AI-based search for convergently expanding, advantageous mutations in SARS-CoV-2 by focusing on oligonucleotide frequencies

Author:

Ikemura ToshimichiORCID,Iwasaki Yuki,Wada Kennosuke,Wada Yoshiko,Abe Takashi

Abstract

Among mutations that occur in SARS-CoV-2, efficient identification of mutations advantageous for viral replication and transmission is important to characterize and defeat this rampant virus. Mutations rapidly expanding frequency in a viral population are candidates for advantageous mutations, but neutral mutations hitchhiking with advantageous mutations are also likely to be included. To distinguish these, we focus on mutations that appear to occur independently in different lineages and expand in frequency in a convergent evolutionary manner. Batch-learning SOM (BLSOM) can separate SARS-CoV-2 genome sequences according by lineage from only providing the oligonucleotide composition. Focusing on remarkably expanding 20-mers, each of which is only represented by one copy in the viral genome, allows us to correlate the expanding 20-mers to mutations. Using visualization functions in BLSOM, we can efficiently identify mutations that have expanded remarkably both in the Omicron lineage, which is phylogenetically distinct from other lineages, and in other lineages. Most of these mutations involved changes in amino acids, but there were a few that did not, such as an intergenic mutation.

Funder

Japan Science and Technology Agency

The Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference48 articles.

1. Coronavirus Disease (COVID-2019);World Health Organization;Situation Reports,2020

2. Characteristics of SARS-CoV-2 and COVID-19;B Hu;Nat Rev Microbiol,2021

3. A Review of Coronavirus Disease-2019 (COVID-19);T. Singhal;Indian J Pediatr,2020

4. Data, disease and diplomacy: GISAID’s innovative contribution to global health;S Elbe;Glob Chall,2017

5. Mutations Strengthened SARS-CoV-2 Infectivity;J Chen;J Mol Biol,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3