Abstract
Objective
Ischemic stroke (IS) with subsequent cerebrocardiac syndrome (CCS) has a poor prognosis. We aimed to investigate electrocardiogram (ECG) changes after IS with artificial intelligence (AI).
Methods
We collected ECGs from a healthy population and patients with IS, and then analyzed participant demographics and ECG parameters to identify abnormal features in post-IS ECGs. Next, we trained the convolutional neural network (CNN), random forest (RF) and support vector machine (SVM) models to automatically detect the changes in the ECGs; Additionally, We compared the CNN scores of good prognosis (mRS ≤ 2) and poor prognosis (mRS > 2) to assess the prognostic value of CNN model. Finally, we used gradient class activation map (Grad-CAM) to localize the key abnormalities.
Results
Among the 3506 ECGs of the IS patients, 2764 ECGs (78.84%) led to an abnormal diagnosis. Then we divided ECGs in the primary cohort into three groups, normal ECGs (N-Ns), abnormal ECGs after the first ischemic stroke (A-ISs), and normal ECGs after the first ischemic stroke (N-ISs). Basic demographic and ECG parameter analyses showed that heart rate, QT interval, and P-R interval were significantly different between 673 N-ISs and 3546 N-Ns (p < 0.05). The CNN has the best performance among the three models in distinguishing A-ISs and N-Ns (AUC: 0.88, 95%CI = 0.86–0.90). The prediction scores of the A-ISs and N-ISs obtained from the all three models are statistically different from the N-Ns (p < 0.001). Futhermore, the CNN scores of the two groups (mRS > 2 and mRS ≤ 2) were significantly different (p < 0.05). Finally, Grad-CAM revealed that the V4 lead may harbor the highest probability of abnormality.
Conclusion
Our study showed that a high proportion of post-IS ECGs harbored abnormal changes. Our CNN model can systematically assess anomalies in and prognosticate post-IS ECGs.
Funder
Hospital-level project of the Second Affiliated Hospital of Nanchang University
Jiangxi Provincial Science and Technology Department Project
Major Projects of Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences
Jiangxi Provincial Education Department Project
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献