Habitat suitability and connectivity modeling predict genetic population structure and priority control areas for invasive nutria (Myocastor coypus) in a temperate river basin

Author:

Kang WanmoORCID,Kim GoWoon,Park YongsuORCID

Abstract

The nutria (Myocastor coypus), also known as the coypu, is a semi-aquatic, invasive rodent native to South America that causes damage to natural riverine and wetland habitats in many parts of the world, including South Korea. Understanding habitat use, connectivity, and gene flow of nutria populations is critical for the sound management of local and regional ecosystems. Here, we assessed habitat suitability and connectivity in relation to the genetic structure of nutria populations in the Nakdong River Basin of South Korea. A total of 321 nutria occurrence sites and seven environmental variables were used to perform ensemble habitat suitability modeling using five species distribution models (SDMs), including boosted regression trees, maximum entropy model, random forest, generalized linear model, and multivariate adaptive regression splines. Using graph and circuit theory approaches, we assessed the population gene flow and current flow betweenness centrality (CFBC) of suitable habitats derived from the ensemble SDM. All SDMs performed well with a range of test AUC values from 0.962 to 0.970 (mean = 0.966) with true skill statistic values over 0.8. The minimum temperature of the coldest month, mean temperature of the warmest quarter, precipitation of the driest quarter, and distance from water bodies were important predictors in nutria habitat modeling. Nutria population gene flow was significantly correlated with the least-cost path distance on a cost resistance surface based on ensemble habitat suitability modeling and roads (Mantel’s r = 0.60, p < 0.05). Finally, the CFBC positively correlated with the genetic diversity of nutria populations was used to identify priority control areas. Habitat suitability and connectivity modeling not only revealed environmental conditions and areas that support the survival and spread of nutrias, but also improved our understanding of the animals’ genetic population structure, thereby indicating priority areas to target for eradication.

Funder

Korea Environmental Industry and Technology Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference79 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3