Preoperative prediction by artificial intelligence for mastoid extension in pars flaccida cholesteatoma using temporal bone high-resolution computed tomography: A retrospective study

Author:

Takahashi MasahiroORCID,Noda Katsuhiko,Yoshida Kaname,Tsuchida Keisuke,Yui Ryosuke,Nakazawa Takara,Kurihara Sho,Baba Akira,Motegi MasaomiORCID,Yamamoto Kazuhisa,Yamamoto Yutaka,Ojiri Hiroya,Kojima Hiromi

Abstract

Cholesteatoma is a progressive middle ear disease that can only be treated surgically but with a high recurrence rate. Depending on the extent of the disease, a surgical approach, such as microsurgery with a retroarticular incision or transcanal endoscopic surgery, is performed. However, the current examination cannot sufficiently predict the progression before surgery, and changes in approach may be made during the surgery. Large amounts of data are typically required to train deep neural network models; however, the prevalence of cholesteatomas is low (1-in-25, 000). Developing analysis methods that improve the accuracy with such a small number of samples is an important issue for medical artificial intelligence (AI) research. This paper presents an AI-based system to automatically detect mastoid extensions using CT. This retrospective study included 164 patients (80 with mastoid extension and 84 without mastoid extension) who underwent surgery. This study adopted a relatively lightweight neural network model called MobileNetV2 to learn and predict the CT images of 164 patients. The training was performed with eight divided groups for cross-validation and was performed 24 times with each of the eight groups to verify accuracy fluctuations caused by randomly augmented learning. An evaluation was performed by each of the 24 single-trained models, and 24 sets of ensemble predictions with 23 models for 100% original size images and 400% zoomed images. Fifteen otolaryngologists diagnosed the images and compared the results. The average accuracy of predicting 400% zoomed images using ensemble prediction model was 81.14% (sensitivity = 84.95%, specificity = 77.33%). The average accuracy of the otolaryngologists was 73.41% (sensitivity, 83.17%; specificity, 64.13%), which was not affected by their clinical experiences. Noteworthily, despite the small number of cases, we were able to create a highly accurate AI. These findings represent an important first step in the automatic diagnosis of the cholesteatoma extension.

Funder

Japan Society for the Promotion of Science London

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference14 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3