Abstract
Introduction
The capability of male mice to exercise in hot environments without succumbing to exertional heat stroke (EHS) is markedly blunted compared to females. Epidemiological evidence in humans and other mammals also suggests some degree of greater vulnerability to heat stroke in males compared to females. The origins of these differences are unknown, but testosterone has previously been shown to induce faster elevations in core temperature during acute, passive heat exposure. In this study, we tested the hypothesis that loss of testosterone and related sex hormones through castration would improve the performance and heat tolerance of male mice during EHS exposure.
Methods
Twenty-four male mice were randomly divided into 3 groups, untreated EHS mice (SHAM-EHS), castrated EHS mice (CAS+EHS) and naïve exercise controls (NAIVE). Exercise performance and physiological responses in the heat were monitored during EHS and early recovery. Two weeks later, blood and tissues were collected and analyzed for biomarkers of cardiac damage and testosterone.
Results
Core temperature in CAS+EHS rose faster to 39.5°C in the early stages of the EHS trial (P<0.0001). However, both EHS groups ran similar distances, exhibited similar peak core temperatures and achieved similar exercise times in the heat, prior to symptom limitation (unconsciousness). CAS+EHS mice had ~10.5% lower body mass at the time of EHS, but this provided no apparent advantage in performance. There was no evidence of myocardial damage in any group, and testosterone levels were undetectable in CAS+EHS after gonadectomy.
Conclusions
The results of these experiments exclude the hypothesis that reduced performance of male mice during EHS trials is due to the effects of male sex hormones or intact gonads. However, the results are consistent with a role of male sex hormones or intact gonads in suppressing the early and rapid rise in core temperature during the early stages of exercise in the heat.
Funder
U.S. Department of Defense, Medical Research and Materiel Command
Publisher
Public Library of Science (PLoS)
Reference50 articles.
1. Classic and exertional heatstroke;A Bouchama;Nat Rev Dis Primers,2022
2. Heat-related illness;WF Atha;Emerg Med Clin North Am,2013
3. Update: Heat illness, active component, U.S. Armed Forces, 2020;MSMR,2021
4. Long-Term Cardiovascular Diseases of Heatstroke: A Delayed Pathophysiology Outcome;FP Nzvere;Cureus,2020
5. Risk of chronic kidney disease in patients with heat injury: A nationwide longitudinal cohort study in Taiwan;M-F Tseng;PLoS One,2020
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献