A simple intuitive method for seeking intersections of hyperbolas for acoustic positioning biotelemetry

Author:

Takagi JunichiORCID,Kanazawa Hirotaka,Ichikawa Kotaro,Mitamura Hiromichi

Abstract

We proposed a simple hyperbolic positioning method that does not require solving simultaneous quadratic equations. Moreover, we introduced the mathematical concept of a “pencil” into analytical calculations in the hyperbolic positioning method for a better understanding. In many recent studies using positioning biotelemetry, the specific procedure for intersection calculation of hyperbolas has rarely been described. This might be one of two major obstacles, with the other being clock synchronisation among receivers, for positioning biotelemetry users, including potential users. We focus only on the intersection calculation in this paper. Therefore, we propose a novel method and introduce the mathematical concept into analytical calculations. The computing performances of the novel method, an analytical method applying the concept of a pencil, and an approximating method using the Newton-Raphson method were compared regarding positioning correctness, accuracy, and calculation speed. In the novel method, hyperbolas were represented using the parameter θ, which was treated as a discrete variant. The finer the tick-width of the parameter θ, the more accurate was its positioning, but it took slightly longer to calculate. By setting the tick-width to 0.01°, a simulated trajectory was correctly and accurately localised, as in the analytical method which always correctly returned the accurate solution. The approximating method has a major limitation concerning correctness. It returns a single solution regardless of two intersections of hyperbolas; however, the positioning is accurate when the hyperbolas intersect at a single point. This study approached one major difficulty in positioning biotelemetry and will help biotelemetry users overcome this drawback with a simple and intuitive understanding of hyperbolic positioning.

Funder

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3