Semi-experimental assessment of neutron equivalent dose and secondary cancer risk for off-field organs in glioma patients undergoing 18-MV radiotherapy

Author:

Elmtalab Soheil,Abedi Iraj,Alirezaei Zahra,Choopan Dastjerdi Mohammad Hossein,Geraily GhazaleORCID,Karimi Amir HosseinORCID

Abstract

Neutron contamination as a source of out-of-field dose in radiotherapy is still of concern. High-energy treatment photons have the potential to overcome the binding energy of neutrons inside the nuclei. Fast neutrons emitting from the accelerator head can directly reach the patient’s bed. Considering that modern radiotherapy techniques can increase patient survival, concerns about unwanted doses and the lifetime risk of fatal cancer remain strong or even more prominent, especially in young adult patients. The current study addressed these concerns by quantifying the dose and risk of fatal cancer due to photo-neutrons for glioma patients undergoing 18-MV radiotherapy. In this study, an NRD model rem-meter detector was used to measure neutron ambient dose equivalent, H*(10), at the patient table. Then, the neutron equivalent dose received by each organ was estimated concerning the depth of each organ and by applying depth dose corrections to the measured H*(10). Finally, the effective dose and risk of secondary cancer were determined using NCRP 116 coefficients. Evidence revealed that among all organs, the breast (0.62 mSv/Gy) and gonads (0.58 mSv/Gy) are at risk of photoneutrons more than the other organs in such treatments. The neutron effective dose in the 18-MV conventional radiotherapy of the brain was 13.36 mSv. Among all organs, gonads (6.96 mSv), thyroid (1.86 mSv), and breasts (1.86 mSv) had more contribution to the effective dose, respectively. The total secondary cancer risk was estimated as 281.4 cases (per 1 million persons). The highest risk was related to the breast and gonads with 74.4 and, 34.8 cases per 1 million persons, respectively. Therefore, it is recommended that to prevent late complications (secondary cancer and genetic effects), these organs should be shielded from photoneutrons. This procedure not only improves the quality of the patient’s personal life but also the healthy childbearing in the community.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference41 articles.

1. Epidemiology of brain tumors;N Reynoso-Noverón;Principles of Neuro-Oncology: Springer,2021

2. Current status of local therapy in malignant gliomas—a clinical review of three selected approaches;TA Juratli;Pharmacology & therapeutics,2013

3. Volumetric modulated arc therapy for nasopharyngeal carcinoma: a dosimetric comparison with TomoTherapy and step-and-shoot IMRT;S-H Lu;Radiotherapy and Oncology,2012

4. Clinical Outcomes and Dosimetric Analysis of 3D Conformal;M Siddhesh Tryambake;Intensity-Modulated and Volumetric Arc Radiation Therapy in Post-operative Oral cavity Cancers–A Single Institution Retrospective Audit,2021

5. Ventricular tachycardia: a treatment comparison study of the cyberknife with conventional linear accelerators;GA Weidlich;Cureus,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3