Structural insights into the RNA interaction with Yam bean Mosaic virus (coat protein) from Pachyrhizus erosus using bioinformatics approach

Author:

Acharya Varsha,Arutselvan R.,Pati KalidasORCID,Rout Ajaya Kumar,Dehury Budheswar,Chauhan V. B. S.ORCID,Nedunchezhiyan M.

Abstract

Plants are constantly threatened by a virus infection, i.e., Potyviruses, the second largest genus of plant viruses which results in several million-dollar losses in various essential crops globally. Yam bean (Pachyrhizus erosus) is considered to be one of the essential tuberous legume crops holding a great potential source of starch. Yam Bean Mosaic Virus (YBMV) of Potyvirus group belonging to the family potyviridae affects Yam bean and several angiosperms both in the tropical and sub-tropical regions causing large economical losses in crops. In this study, we attempted to understand the sequence-structure relationship and mode of RNA binding mechanism in YBMV CP using in silico integrative modeling and all-atoms molecular dynamics (MD) simulations. The assembly of coat protein (CP) subunits from YBMV and the plausible mode of RNA binding were compared with the experimental structure of CP from Watermelon mosaic virus potyvirus (5ODV). The transmembrane helix region is present in the YBMV CP sequence ranging from 76 to 91 amino acids. Like the close structural-homolog, 24 CPs monomeric sub-units formed YBMV a conserved fold. Our computational study showed that ARG124, ARG155, and TYR151 orient towards the inner side of the virion, while, THR122, GLN125, SER92, ASP94 reside towards the outer side of the virion. Despite sharing very low sequence similarity with CPs from other plant viruses, the strongly conserved residues Ser, Arg, and Asp within the RNA binding pocket of YBMV CP indicate the presence of a highly conserved RNA binding site in CPs from different families. Using several bioinformatics tools and comprehensive analysis from MD simulation, our study has provided novel insights into the RNA binding mechanism in YBMV CP. Thus, we anticipate that our findings from this study will be useful for the development of new therapeutic agents against the pathogen, paving the way for researchers to better control this destructive plant virus.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3