Information loss and bias in likert survey responses

Author:

Westland J. ChristopherORCID

Abstract

Likert response surveys are widely applied in marketing, public opinion polls, epidemiological and economic disciplines. Theoretically, Likert mapping from real-world beliefs could lose significant amounts of information, as they are discrete categorical metrics. Similarly, the subjective nature of Likert-scale data capture, through questionnaires, holds the potential to inject researcher biases into the statistical analysis. Arguments and counterexamples are provided to show how this loss and bias can potentially be substantial under extreme polarization or strong beliefs held by the surveyed population, and where the survey instruments are poorly controlled. These theoretical possibilities were tested using a large survey with 14 Likert-scaled questions presented to 125,387 respondents in 442 distinct behavioral-demographic groups. Despite the potential for bias and information loss, the empirical analysis found strong support for an assumption of minimal information loss under Normal beliefs in Likert scaled surveys. Evidence from this study found that the Normal assumption is a very good fit to the majority of actual responses, the only variance from Normal being slightly platykurtic (kurtosis ~ 2) which is likely due to censoring of beliefs after the lower and upper extremes of the Likert mapping. The discussion and conclusions argue that further revisions to survey protocols can assure that information loss and bias in Likert-scaled data are minimal.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference37 articles.

1. A technique for the measurement of attitudes;R Likert;Archives of psychology,1932

2. Likert R. New patterns of management. 1961.

3. Murphy G, LikertR. Public opinion and the individual. Harper; 1938.

4. Silver N. The polls weren’t great. https://fivethirtyeightcom/features/the-polls-werent-great-but-thats-pretty-normal/. 2020.

5. Cohn N. What the polls got wrong. https://wwwnewyorkercom/news/q-and-a/nate-cohn-explains-what-the-polls-got-wrong. 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3