Abstract
Purpose
Bruton’s tyrosine kinase (BTK) is an essential protein in B-cell antigen receptor (BCR) signaling pathway and is known to be related to pathogenetic effect on B-cell related malignancies and various autoimmune diseases. In this study, we investigated the therapeutic effect of ibrutinib, an orally bioavailable BTK inhibitor in the pathogenesis of Graves’ orbitopathy (GO) in in vitro model.
Methods
Expression of BTK in orbital tissues from GO and normal control subjects were evaluated by real-time polymerase chain reaction (PCR). Primary cultured orbital fibroblasts from each subject were exposed to ibrutinib and stimulated with interleukin (IL)-1β or insulin like growth factor (IGF)-1. Production of inflammatory cytokines was evaluated by real time PCR and enzyme-linked immunosorbent assays (ELISA). The downstream transcription factors were also determined by western blot assays.
Results
The expression of BTK in GO tissues were significantly higher than in healthy controls. After stimulation of GO orbital fibroblasts with IL-1β or IGF-1, BTK mRNA and phosphorylated (p)- BTK protein expression was also enhanced. Ibrutinib reduced the expression of BTK mRNA and proteins of p-BTK, and inhibited the IL-1β- and IGF-1-induced production of proinflammatory cytokines including IL-6, IL-8 and COX-2 in both GO and normal cells. Ibrutinib also significantly attenuated phosphorylation of Akt, p38, c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) in IL-1β stimulated GO cells and Akt, JNK, and NF-κB in IL-1ß stimulated normal cells.
Conclusions
BTK expression is enhanced in GO tissue and orbital fibroblasts. Ibrutinib, a BTK inhibitor suppresses proinflammatory cytokine production as well as phosphorylation of Akt and NF-κB protein. Our results suggest the potential role of BTK in GO inflammatory pathogenesis and possibility of a novel therapeutic target of GO.
Funder
Ministry of Science and ICT, South Korea
MSIT
Publisher
Public Library of Science (PLoS)
Reference53 articles.
1. Cell-mediated or humoral immunity in Graves’ ophthalmopathy? Profiles of T-cell cytokines amplified by polymerase chain reaction from orbital tissue;SM McLachlan;J Clin Endocrinol Metab,1994
2. Biological effects of thyrotropin receptor activation on human orbital preadipocytes;L Zhang;Invest Ophthalmol Vis Sci,2006
3. B cells from patients with Graves’ disease aberrantly express the IGF-1 receptor: implications for disease pathogenesis;RS Douglas;J Immunol,2008
4. Immunopathogenesis of thyroid eye disease: emerging paradigms;VM Naik;Surv Ophthalmol,2010
5. Graves’ ophthalmopathy;RS Bahn;N Engl J Med,2010
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献