A novel SfaNI-like restriction-modification system in Caldicellulosiruptor extents the genetic engineering toolbox for this genus

Author:

Swinnen SteveORCID,Zurek Christian,Krämer Marco,Heger Rebecca M.ORCID,Domeyer Jan-Eike,Ziegler Jan,Svetlitchnyi Vitali A.,Läufer Albrecht

Abstract

Caldicellulosiruptor is a genus of thermophilic to hyper-thermophilic microorganisms that express and secrete an arsenal of enzymes degrading lignocellulosic biomasses into fermentable sugars. Because of this distinguished feature, strains of Caldicellulosiruptor have been considered as promising candidates for consolidated bioprocessing. Although a few Caldicellulosiruptor strains with industrially relevant characteristics have been isolated to date, it is apparent that further improvement of the strains is essential for industrial application. The earlier identification of the HaeIII-like restriction-modification system in C. bescii strain DSM 6725 has formed the basis for genetic methods with the aim to improve the strain’s lignocellulolytic activity and ethanol production. In this study, a novel SfaNI-like restriction-modification system was identified in Caldicellulosiruptor sp. strain BluCon085, consisting of an endonuclease and two methyltransferases that recognize the reverse-complement sequences 5’-GATGC-3’ and 5‘-GCATC-3’. Methylation of the adenine in both sequences leads to an asymmetric methylation pattern in the genomic DNA of strain BluCon085. Proteins with high percentage of identity to the endonuclease and two methyltransferases were identified in the genomes of C. saccharolyticus strain DSM 8903, C. naganoensis strain DSM 8991, C. changbaiensis strain DSM 26941 and Caldicellulosiruptor sp. strain F32, suggesting that a similar restriction-modification system may be active also in these strains and respective species. We show that methylation of plasmid and linear DNA by the identified methyltransferases, obtained by heterologous expression in Escherichia coli, is sufficient for successful transformation of Caldicellulosiruptor sp. strain DIB 104C. The genetic engineering toolbox developed in this study forms the basis for rational strain improvement of strain BluCon085, a derivative from strain DIB 104C with exceptionally high L-lactic acid production. The toolbox may also work for other species of the genus Caldicellulosiruptor that have so far not been genetically tractable.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3