Influence of relay intercropping of barley with chickpea on biochemical characteristics and yield under water stress

Author:

Assadi Negin Mohavieh,Bijanzadeh EhsanORCID

Abstract

Relay intercropping of legumes with cereals is a useful technique for yield increment. Intercropping may affect the photosynthetic pigments, enzyme activity and yield of barley and chickpea under water stress. To investigate the effect of relay intercropping of barley with chickpea on pigment content, enzyme activity and yield under water stress, a field experiment was conducted during 2017 and 2018. The treatments included irrigation regimes (normal irrigation and cutting off irrigation at the milk development stage) as the main plot. Also, cropping systems as sub plot consisted of sole and relay intercropping of barley with chickpea in two sowing dates (December vs January). Under water stress, the early establishment of barley in December intercropped with chickpea in January (b1c2) enhanced the leaf chlorophyll content by 16% compared to sole cropping due to less competition with chickpea. Late sowing of chickpea enhanced the leaf carotenoid content of chickpea, catalase and peroxidase activities. Barley-chickpea intercropping enhanced the WUE and guaranteed a more efficient use of space (land equivalent ratio of more than 1) compared with sole crops. Under water stress, in b1c2 enhancement of total chlorophyll and water use efficiency caused to increase the grain yield of barley. In b1c2, barley and chickpea reacted to water stress with increasing total chlorophyll and enzyme activity, respectively. In this relay intercropping treatment, each crop occupied and used the growth resources from different ecological niches at different times, which is recommended in semi-arid areas.

Funder

Shiraz University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference76 articles.

1. Dry matter yield, nitrogen content, and competition in pea–cereal intercropping systems;A Lithourgidis;Eur J Agr,2011

2. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems;MA Raza;Sci Rep,2019

3. Optimizing planting geometry for barley-Egyptian clover intercropping system in semi-arid sub-tropical climate;M Ikram ul Haq;Plos One,2020

4. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots;A Inal;Plant Phy Bio,2007

5. Effect on growth and yield of intercrops in wheat+ chickpea intercropping under limited nutrition and moisture;B Singh;Indian J Eco,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3