Abstract
Here, we aimed to identify and characterize genomic regions that differ between Groningen White Headed (GWH) breed and other cattle, and in particular to identify candidate genes associated with coat color and/or eye-protective phenotypes. Firstly, whole genome sequences of 170 animals from eight breeds were used to evaluate the genetic structure of the GWH in relation to other cattle breeds by carrying out principal components and model-based clustering analyses. Secondly, the candidate genomic regions were identified by integrating the findings from: a) a genome-wide association study using GWH, other white headed breeds (Hereford and Simmental), and breeds with a non-white headed phenotype (Dutch Friesian, Deep Red, Meuse-Rhine-Yssel, Dutch Belted, and Holstein Friesian); b) scans for specific signatures of selection in GWH cattle by comparison with four other Dutch traditional breeds (Dutch Friesian, Deep Red, Meuse-Rhine-Yssel and Dutch Belted) and the commercial Holstein Friesian; and c) detection of candidate genes identified via these approaches. The alignment of the filtered reads to the reference genome (ARS-UCD1.2) resulted in a mean depth of coverage of 8.7X. After variant calling, the lowest number of breed-specific variants was detected in Holstein Friesian (148,213), and the largest in Deep Red (558,909). By integrating the results, we identified five genomic regions under selection on BTA4 (70.2–71.3 Mb), BTA5 (10.0–19.7 Mb), BTA20 (10.0–19.9 and 20.0–22.7 Mb), and BTA25 (0.5–9.2 Mb). These regions contain positional and functional candidate genes associated with retinal degeneration (e.g., CWC27 and CLUAP1), ultraviolet protection (e.g., ERCC8), and pigmentation (e.g. PDE4D) which are probably associated with the GWH specific pigmentation and/or eye-protective phenotypes, e.g. Ambilateral Circumocular Pigmentation (ACOP). Our results will assist in characterizing the molecular basis of GWH phenotypes and the biological implications of its adaptation.
Publisher
Public Library of Science (PLoS)
Reference96 articles.
1. Detection of selective sweeps in cattle using genome-wide SNP data;HR Ramey;BMC Genomics,2013
2. Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds;SM Ghoreishifar;Genet Sel Evol,2020
3. An interpretive review of selective sweep studies in Bos taurus cattle populations: Identification of unique and shared selection signals across breeds.;B Gutiérrez-Gil;Frontiers in Genetics. Frontiers Media S.A.,2015
4. Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle;S Qanbari;BMC Genomics,2011
5. The evolution of human skin coloration;NG Jablonski;J Hum Evol,2000
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献