MTNet: A combined diagnosis algorithm of vessel segmentation and diabetic retinopathy for retinal images

Author:

Liu Ruochen,Gao SongORCID,Zhang Hengsheng,Wang Simin,Zhou Lun,Liu Jiaming

Abstract

Medical studies have shown that the condition of human retinal vessels may reveal the physiological structure of the relationship between age-related macular degeneration, glaucoma, atherosclerosis, cataracts, diabetic retinopathy, and other ophthalmic diseases and systemic diseases, and their abnormal changes often serve as a diagnostic basis for the severity of the condition. In this paper, we design and implement a deep learning-based algorithm for automatic segmentation of retinal vessel (CSP_UNet). It mainly adopts a U-shaped structure composed of an encoder and a decoder and utilizes a cross-stage local connectivity mechanism, attention mechanism, and multi-scale fusion, which can obtain better segmentation results with limited data set capacity. The experimental results show that compared with several existing classical algorithms, the proposed algorithm has the highest blood vessel intersection ratio on the dataset composed of four retinal fundus images, reaching 0.6674. Then, based on the CSP_UNet and introducing hard parameter sharing in multi-task learning, we innovatively propose a combined diagnosis algorithm vessel segmentation and diabetic retinopathy for retinal images (MTNet). The experiments show that the diagnostic accuracy of the MTNet algorithm is higher than that of the single task, with 0.4% higher vessel segmentation IoU and 5.2% higher diagnostic accuracy of diabetic retinopathy classification.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference37 articles.

1. Automated assembling of images: Image montage preparation;P Dani;Pattern Recognition,1995

2. Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses;Q Li;Expert Systems with Applications,2012

3. A model-based consecutive scanline tracking method for extracting vascular networks from 2-D digital subtraction angiograms;P Zou;IEEE Transactions on Medical Imaging,2008

4. Retinal vessel segmentation using a probabilistic tracking method;Y Yin;Pattern Recognition,2012

5. Ridge-based vessel segmentation in color images of the retina;J Staal;IEEE transactions on medical imaging,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3