Abstract
A growing number of studies suggest that climate may impact the spread of COVID-19. This hypothesis is supported by data from similar viral contagions, such as SARS and the 1918 Flu Pandemic, and corroborated by US influenza data. However, the extent to which climate may affect COVID-19 transmission rates and help modeling COVID-19 risk is still not well understood. This study demonstrates that such an understanding is attainable through the development of regression models that verify how climate contributes to modeling COVID-19 transmission, and the use of feature importance techniques that assess the relative weight of meteorological variables compared to epidemiological, socioeconomic, environmental, and global health factors. The ensuing results show that meteorological factors play a key role in regression models of COVID-19 risk, with ultraviolet radiation (UV) as the main driver. These results are corroborated by statistical correlation analyses and a panel data fixed-effect model confirming that UV radiation coefficients are significantly negatively correlated with COVID-19 transmission rates.
Funder
Qatar National Research Fund
Publisher
Public Library of Science (PLoS)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献