Effect of decoration route on the nanomechanical, adhesive, and force response of nanocelluloses—An in situ force spectroscopy study

Author:

Li JingORCID,Mathew Aji P.

Abstract

Although cellulose derivatives are widely applied in high-tech materials, the relation between their force responses and their surface chemical properties in a biological environment as a function of pH is unknown. Here, interaction forces of surface modified cellulose nanocrystals (CNCs), lignin residual cellulose nanocrystals (LCNCs), and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized cellulose nanofibres (TCNFs) with OSO3, COO and lignin chemical groups were measured using in situ peak force quantitative nanomechanical mapping and force spectroscopy in salt solution at two pH values. We found that the forces acting between the tip and CNC or LCNC are steric dominated showing long range and slow decay as a result of their low surface charge density. High Mw lignin contributed to the increased repulsion range for LCNCs compared to CNCs. The repulsion measured for TCNFs at the very short range was electrostatic force dominating showing a steep decay attributed to its high surface charge density. In the case of TCNFs, electrostatic double layer force was also evidenced by the attraction measured at secondary minima. In all the three cases the electro steric interactions are pH dependent. Dissipation maps verified that the force behavior for each material was related to structural conformation restriction of the groups at compression. The slow decayed repulsion of CNCs or LCNCs is related to a weak restriction of conformational change due to small surface groups or high molecular weight bound polymers forming flat layers, whereas the steep repulsion of TCNFs is attributed to a strong conformation restriction of carboxylic groups occurred by forming extended structure. Our results suggest that the force responses of the materials were dominated by surface charges and structural differences. TCNFs showed superior nanomechanical and repulsion properties over CNCs or LCNCs at neutral pH.

Funder

Åke Åkesson Stiftelse

Vetenskapsrådet

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference79 articles.

1. Cellulose Nanomaterials in Water Treatment Technologies;AW Carpenter;Environ Sci Technol,2015

2. Developing fibrillated cellulose as a sustainable technological material;T Li;Nature,2021

3. TEMPO-Mediated Oxidation of Native Cellulose;T Saito;The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions,2004

4. Topochemical Engineering of Cellulose-Based Functional Materials.;LS Sobhanadhas;Langmuir,2018

5. TEMPO-oxidized cellulose nanofibers.;A Isogai;Nanoscale,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3