1H NMR metabolic profiling of Staphylococcus pseudintermedius isolated from canine uroliths

Author:

Uttamamul NahathaiORCID,Suksawat ManidaORCID,Phetcharaburanin JutaropORCID,Jitpean SupraneeORCID,Lulitanond Aroonlug,Sae-ung NattayaORCID,Boonsiri Patcharee,Tavichakorntrakool RatreeORCID

Abstract

Staphylococcus pseudintermedius is a urease-producing bacteria which is a major cause of magnesium ammonium phosphate (MAP) urolithiasis in canine. A positive urolith culture is an important risk factor for MAP urolithiasis in canine. The mechanism underlying the metabolic changes of S. pseudintermedius after crystallization in artificial urine (AU) needs more defined baseline metabolic information. Therefore, we extensively investigated the metabolic changes of S. pseudintermedius extensively after crystallization in AU. A high urease activity and positive biofilm formation strain, entitled the S. pseudintermedius (SPMAP09) strain, was isolated from canine MAP uroliths, and analyzed using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics. The molecular mechanism-specific metabolic phenotypes were clearly observed after crystallization in AU at day 3. The crystals induced by SPMAP09 were also confirmed and the major chemical composition identified as struvite. Interestingly, our findings demonstrated that a total of 11 identified metabolites were significantly changed. The levels of formate, homocarnosine, tyrosine, cis-aconitate, glycolate, ethyl malonate, valine and acetate level were significantly higher, accompanied with decreased levels of inosine, glucose, and threonine at day 3 compared with the initial time-point (day 0). In addition, our results exhibited that the glyoxylate and dicarboxylate metabolism was significantly related to the SPMAP09 strain at day 3 in AU. Thus, metabolic changes of the SPMAP09 strain after crystallization in AU potentially helps to explain the preliminary molecular mechanism for the crystals induced by S. pseudintermedius.

Funder

Thailand Research Fund

Centre for Research and Development of the Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3