Predicting technological innovation in new energy vehicles based on an improved radial basis function neural network for policy synergy

Author:

Hao YingORCID,Guo Mingshun,Guo YijingORCID

Abstract

Policy synergy is necessary to promote technological innovation and sustainable industrial development. A radial basis function (RBF) neural network model with an automatic coding machine and fractional momentum was proposed for the prediction of technological innovation. Policy keywords for China’s new energy vehicle policies issued over the years were quantified by the use of an Latent Dirichlet Allocation (LDA) model. The training of the neural network model was completed by using policy keywords, synergy was measured as the input layer, and the number of synchronous patent applications was measured as the output layer. The predictive efficacies of the traditional neural network model and the improved neural network model were compared again to verify the applicability and accuracy of the improved neural network. Finally, the influence of the degree of synergy on technological innovation was revealed by changing the intensity of policy measures. This study provides a basis for the relevant departments to formulate industrial policies and improve innovation performance by enterprises.

Funder

Humanities and Social Sciences Fund of Department of Education of Liaoning province

Humanities and Social Sciences Fund of Liaoning Engineering Vocational College

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference30 articles.

1. Who co-operates for innovation and why: An empirical analysis;B S. Tether;Research Policy,2002

2. Policy-mix evaluation: governance challenges from new place-based innovation policies;E Margo;Research Policy,2019

3. Downstream merger and welfare in a bilateral oligopoly;G. Symeonidis;International Journal of Industrial Organization,2010

4. Policy coordination of New Energy Vehicles in China—Evaluation and evolution;L Zhang;Journal of BeiJing Institute of Technology (Social Sciences Edition),2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3