A Genome-Wide Association study in Arabidopsis thaliana to decipher the adaptive genetics of quantitative disease resistance in a native heterogeneous environment

Author:

Roux FabriceORCID,Frachon Léa

Abstract

Pathogens are often the main selective agents acting in plant communities, thereby influencing the distribution of polymorphism at loci affecting resistance within and among natural plant populations. In addition, the outcome of plant-pathogen interactions can be drastically affected by abiotic and biotic factors at different spatial and temporal grains. The characterization of the adaptive genetic architecture of disease resistance in native heterogeneous environments is however still missing. In this study, we conducted an in situ Genome-Wide Association study in the spatially heterogeneous native habitat of a highly genetically polymorphic local mapping population of Arabidopsis thaliana, to unravel the adaptive genetic architecture of quantitative disease resistance. Disease resistance largely differed among three native soils and was affected by the presence of the grass Poa annua. The observation of strong crossing reactions norms among the 195 A. thaliana genotypes for disease resistance among micro-habitats, combined with a negative fecundity-disease resistance relationship in each micro-habitat, suggest that alternative local genotypes of A. thaliana are favored under contrasting environmental conditions at the scale of few meters. A complex genetic architecture was detected for disease resistance and fecundity. However, only few QTLs were common between these two traits. Heterogeneous selection in this local population should therefore promote the maintenance of polymorphism at only few candidate resistance genes.

Funder

Plant Health and Environment INRAE division

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3