Genotype-by-environment interaction and genetic dissection of heartwood color in Cryptomeria japonica based on multiple common gardens and quantitative trait loci mapping

Author:

Mori Hideki,Ueno Saneyoshi,Ujino-Ihara Tokuko,Fujiwara Takeshi,Yamashita KanaORCID,Kanetani Seiichi,Endo Ryota,Matsumoto AsakoORCID,Uchiyama Kentaro,Yoshida Takahiro,Sakai Yoshimi,Moriguchi Yoshinari,Kusano Ryouichi,Tsumura Yoshihiko

Abstract

The heartwood color of a major plantation tree Cryptomeria japonica shows high variability among clones and cultivars, and brighter heartwood has higher value in the usage of non-laminated wood such as in traditional construction, which makes heartwood color an important trait in breeding of this species. However, the genetic basis of the interactions between genetics and the environment on heartwood color has been understudied while these are necessary for effective breeding programs in multiple environmental condition. The objectives of the present study were to evaluate the effects of genetics and environments on heartwood color and how they interact in contrasting environments, and to identify genomic regions controlling heartwood color in C. japonica across multiple environments. Heartwood color in terms of L*a*b* color space and spectral reflectance was measured in common gardens established in three contrasting sites. Quantitative trait loci (QTL) that affect heartwood color were identified using previously constructed highly saturated linkage maps. Results found that heartwood color was largely genetically controlled, and genotype-by-environment interaction explained one-third of the total genetic variance of heartwood color. The effect of the environment was small compared to the effect of genetics, whereas environmental effects largely varied among heartwood color traits. QTL analysis identified a large number of QTLs with small to moderate effects (phenotypic variation explained of 6.6% on average). Some of these QTLs were stably expressed in multiple environments or had pleiotropic effects on heartwood color and moisture content. These results indicated that genetic variation in phenotypic plasticity plays an important role in regulating heartwood color and that the identified QTLs would maximize the breeding efficiency of heartwood color in C. japonica in heterogeneous environments.

Funder

Forestry and Forest Products Research Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3