Diagnostic performance of deep learning-based automatic white matter hyperintensity segmentation for classification of the Fazekas scale and differentiation of subcortical vascular dementia

Author:

Joo Leehi,Shim Woo Hyun,Suh Chong HyunORCID,Lim Su Jin,Heo Hwon,Kim Woo Seok,Hong Eunpyeong,Lee Dongsoo,Sung Jinkyeong,Lim Jae-Sung,Lee Jae-Hong,Kim Sang Joon

Abstract

Purpose To validate the diagnostic performance of commercially available, deep learning-based automatic white matter hyperintensity (WMH) segmentation algorithm for classifying the grades of the Fazekas scale and differentiating subcortical vascular dementia. Methods This retrospective, observational, single-institution study investigated the diagnostic performance of a deep learning-based automatic WMH volume segmentation to classify the grades of the Fazekas scale and differentiate subcortical vascular dementia. The VUNO Med-DeepBrain was used for the WMH segmentation system. The system for segmentation of WMH was designed with convolutional neural networks, in which the input image was comprised of a pre-processed axial FLAIR image, and the output was a segmented WMH mask and its volume. Patients presented with memory complaint between March 2017 and June 2018 were included and were split into training (March 2017–March 2018, n = 596) and internal validation test set (April 2018–June 2018, n = 204). Results Optimal cut-off values to categorize WMH volume as normal vs. mild/moderate/severe, normal/mild vs. moderate/severe, and normal/mild/moderate vs. severe were 3.4 mL, 9.6 mL, and 17.1 mL, respectively, and the AUC were 0.921, 0.956 and 0.960, respectively. When differentiating normal/mild vs. moderate/severe using WMH volume in the test set, sensitivity, specificity, and accuracy were 96.4%, 89.9%, and 91.7%, respectively. For distinguishing subcortical vascular dementia from others using WMH volume, sensitivity, specificity, and accuracy were 83.3%, 84.3%, and 84.3%, respectively. Conclusion Deep learning-based automatic WMH segmentation may be an accurate and promising method for classifying the grades of the Fazekas scale and differentiating subcortical vascular dementia.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3