Predicting Intensive Care Unit admission among patients presenting to the emergency department using machine learning and natural language processing

Author:

Fernandes MartaORCID,Mendes Rúben,Vieira Susana M.ORCID,Leite Francisca,Palos Carlos,Johnson Alistair,Finkelstein Stan,Horng Steven,Celi Leo AnthonyORCID

Funder

Fundação para a Ciência e a Tecnologia

Programa Operacional Regional de Lisboa by FEDER

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference37 articles.

1. Moore B, Stocks C and Owens P. Trends in Emergency Department Visits, 2006–2014, Hcup Statistical Brief# 227. Rockville, MD: Agency for Healthcare Research and Quality. Retrieved from https://www.hcup-us.ahrq.gov/reports/statbriefs/sb227-Emergency-Department-Visit-Trends.pdf.

2. The effect of training on nurse agreement using an electronic triage system;SL Dong;Canadian Journal of Emergency Medicine,2007

3. Predictive analytics for hospital admissions from the emergency department using triage information;Ozgur M. Araz;International Journal of Production Economics,2019

4. Using data mining to predict hospital admissions from the emergency department;B Graham;IEEE Access,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3