Artificial intelligence-assisted metastasis and prognosis model for patients with nodular melanoma

Author:

Xu Chan,Yu Xiaoyu,Ding ZhendongORCID,Fang Caixia,Gao Murong,Liu Wencai,Liu Xiaozhu,Yin Chengliang,Gu Renjun,Liu Lu,Li WenleORCID,Wu Shi-Nan,Cao Bei

Abstract

Objective The objective of this study was to identify the risk factors that influence metastasis and prognosis in patients with nodular melanoma (NM), as well as to develop and validate a prognostic model using artificial intelligence (AI) algorithms. Methods The Surveillance, Epidemiology, and End Results (SEER) database was queried for 4,727 patients with NM based on the inclusion/exclusion criteria. Their clinicopathological characteristics were retrospectively reviewed, and logistic regression analysis was utilized to identify risk factors for metastasis. This was followed by employing Multilayer Perceptron (MLP), Adaptive Boosting (AB), Bagging (BAG), logistic regression (LR), Gradient Boosting Machine (GBM), and eXtreme Gradient Boosting (XGB) algorithms to develop metastasis models. The performance of the six models was evaluated and compared, leading to the selection and visualization of the optimal model. Through integrating the prognostic factors of Cox regression analysis with the optimal models, the prognostic prediction model was constructed, validated, and assessed. Results Logistic regression analyses identified that marital status, gender, primary site, surgery, radiation, chemotherapy, system management, and N stage were all independent risk factors for NM metastasis. MLP emerged as the optimal model among the six models (AUC = 0.932, F1 = 0.855, Accuracy = 0.856, Sensitivity = 0.878), and the corresponding network calculator (https://shimunana-nm-distant-m-nm-m-distant-8z8k54.streamlit.app/) was developed. The following were examined as independent prognostic factors: MLP, age, marital status, sequence number, laterality, surgery, radiation, chemotherapy, system management, T stage, and N stage. System management and surgery emerged as protective factors (HR < 1). To predict 1-, 3-, and 5-year overall survival (OS), a nomogram was created. The validation results demonstrated that the model exhibited good discrimination and consistency, as well as high clinical usefulness. Conclusion The developed prediction model more effectively reflects the prognosis of patients with NM and differentiates between the risk level of patients, serving as a useful supplement to the classical American Joint Committee on Cancer (AJCC) staging system and offering a reference for clinically stratified individualized treatment and prognosis prediction. Furthermore, the model enables clinicians to quantify the risk of metastasis in NM patients, assess patient survival, and administer precise treatments.

Funder

Key Medical and Health Technology Research Project of Taicang Science and Technology Bureau

Publisher

Public Library of Science (PLoS)

Reference38 articles.

1. Changes in the Immune Cell Repertoire for the Treatment of Malignant Melanoma;K. Nakamura;Int J Mol Sci,2022

2. The WHO 2018 Classification of Cutaneous Melanocytic Neoplasms: Suggestions From Routine Practice;G. Ferrara;Front Oncol,2021

3. Melanomas;C. Longo;Dermatol Clin,2016

4. Rate of growth in melanomas: characteristics and associations of rapidly growing melanomas;W. Liu;Arch Dermatol,2006

5. Superficial spreading and nodular melanoma are distinct biological entities: a challenge to the linear progression model;H.S. Greenwald;Melanoma Res,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3