PAAD: Panelization algorithm for architectural designs

Author:

Fisher AndrewORCID,Tan Xing,Billah Muntasir,Lingras Pawan,Huang JimmyORCID,Mago VijayORCID

Abstract

Due to the competitive nature of the construction industry, the efficiency of requirement analysis is important in enhancing client satisfaction and a company’s reputation. For example, determining the optimal configuration of panels (generally called panelization) that form the structure of a building is one aspect of cost estimation. However, existing methods typically rely on rule-based approaches that may lead to suboptimal material usage, particularly in complex designs featuring angled walls and openings. Such inefficiency can increase costs and environmental impact due to unnecessary material waste. To address these challenges, this research proposes a Panelization Algorithm for Architectural Designs, referred to as PAAD, which utilizes a genetic evolutionary strategy built on the 2D bin packing problem. This method is designed to balance between strict adherence to manufacturing constraints and the objective of optimizing material usage. PAAD starts with multiple potential solutions within the predefined problem space, facilitating dynamic exploration of panel configurations. It approaches structural rules as flexible constraints, making necessary corrections in post-processing, and through iterative developments, the algorithm refines panel sets to minimize material use. The methodology is validated through an analysis against an industry implementation and expert-derived solutions, highlighting PAAD’s ability to surpass existing results and reduce the need for manual corrections. Additionally, to motivate future research, a synthetic data generator, the architectural drawing encodings used, and a preliminary interface are also introduced. This not only highlights the algorithm’s practical applicability but also encourages its use in real-world scenarios.

Funder

Mitacs

Publisher

Public Library of Science (PLoS)

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3