Spatial variability and source analysis of soil heavy metals: A case study of the key planting area of special agricultural products in Cangxi County, China

Author:

Feng ZiweiORCID,Chen Wende,Meng Yichen,Lu Haixia,Shi Xinyi,Zhang Jiajun

Abstract

Heavy metal pollution in farmland soil represents a considerable risk to ecosystems and human health, constituting a global concern. Focusing on a key area for the cultivation of special agricultural products in Cangxi County, we collected 228 surface soil samples. We analyzed the concentration, spatial distribution, and pollution levels of six heavy metals (Cr, Cu, Pb, Ni, Zn, and Hg) in the soil. Moreover, we investigated the sources and contribution rates of these heavy metals using Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS) and Positive Matrix Factorization (PMF) models. Our findings indicate that none of the six metals exceeded the pollution thresholds for farmland soils. However, the mean concentrations of Cr and Ni surpassed the background levels of Sichuan Province. A moderate spatial correlation existed between Pb and Ni, attributable to both natural and anthropogenic factors, whereas Zn, Cu, Hg, and Cr displayed a strong spatial correlation, mainly due to natural factors. The spatial patterns of Cr, Cu, Zn, Pb, and Ni were similar, with higher concentrations in the northern and eastern regions and lower concentrations centrally. Hg’s spatial distribution differed, exhibiting a broader range of lower values. The single pollution index evaluation showed that Cr and Ni were low pollution, and the other elements were no pollution. The average value of comprehensive pollution index is 0.994, and the degree of pollution is close to light pollution. Predominantly, higher pollution levels in the northern and eastern regions, lower around reservoirs. The PCA/APCS model identified two main pollution sources: agricultural traffic mixed source (65.2%) and natural parent source (17.2%). The PMF model delineated three sources: agricultural activities (32.59%), transportation (30.64%), and natural parent sources (36.77%). Comparatively, the PMF model proved more accurate and reliable, yielding findings more aligned with the study area’s actual conditions.

Publisher

Public Library of Science (PLoS)

Reference82 articles.

1. Improved heavy metal mapping and pollution source apportionment in Shanghai City soils using auxiliary information;X Fei;Science of The Total Environment,2019

2. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review;N Barsova;Environmental Pollution,2019

3. Investigation of health and ecological risk attributed to the soil heavy metals in Iran: Systematic review and meta-analysis;M Faraji;Science of The Total Environment,2023

4. Heavy metal, trace element and petroleum hydrocarbon pollution in the Arabian Gulf;AM Freije;Review. Journal of the Association of Arab Universities for Basic and Applied Sciences,2018

5. Pollution trends and ecological risks of heavy metal(loid)s in coastal zones of Bangladesh: A chemometric review.;JN Jannat;Marine Pollution Bulletin,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3