Abstract
Multimodal medical image fusion is a perennially prominent research topic that can obtain informative medical images and aid radiologists in diagnosing and treating disease more effectively. However, the recent state-of-the-art methods extract and fuse features by subjectively defining constraints, which easily distort the exclusive information of source images. To overcome these problems and get a better fusion method, this study proposes a 2D data fusion method that uses salient structure extraction (SSE) and a swift algorithm via normalized convolution to fuse different types of medical images. First, salient structure extraction (SSE) is used to attenuate the effect of noise and irrelevant data in the source images by preserving the significant structures. The salient structure extraction is performed to ensure that the pixels with a higher gradient magnitude impact the choices of their neighbors and further provide a way to restore the sharply altered pixels to their neighbors. In addition, a Swift algorithm is used to overcome the excessive pixel values and modify the contrast of the source images. Furthermore, the method proposes an efficient method for performing edge-preserving filtering using normalized convolution. In the end,the fused image are obtained through linear combination of the processed image and the input images based on the properties of the filters. A quantitative function composed of structural loss and region mutual data loss is designed to produce restrictions for preserving data at feature level and the structural level. Extensive experiments on CT-MRI images demonstrate that the proposed algorithm exhibits superior performance when compared to some of the state-of-the-art methods in terms of providing detailed information, edge contour, and overall contrasts.
Publisher
Public Library of Science (PLoS)