Dynamics and control of typhoid fever in Sheno town, Ethiopia: A comprehensive nonlinear model for transmission analysis and effective intervention strategies

Author:

Baisa Lema Abdela,Kotola Belela SamuelORCID

Abstract

This study presents a reliable mathematical model to explain the spread of typhoid fever, covering stages of susceptibility, infection, carrying, and recovery, specifically in the Sheno town community. A detailed analysis is done to ensure the solutions are positive, stay within certain limits, and are stable for both situations where the disease is absent and where it is consistently present. The Routh-Hurwitz stability criterion has been used and applied for the purpose of stability analysis. Using the next-generation matrix, we determined the intrinsic potential for disease transmission. It showing that typhoid fever is spreading actively in Sheno town, with cases above a critical level. Our findings reveal the instability of the disease-free equilibrium point alongside the stability of the endemic equilibrium point. We identified two pivotal factors for transmission of the disease: the infectious rate, representing the speed of disease transmission, and the recruitment rate, indicating the rate at which new individuals enter the susceptible population. These parameters are indispensable for devising effective control measures. It is imperative to keep these parameters below specific thresholds to maintain a basic reproduction number favorable for disease control. Additionally, the study carefully examines how different factors affect the spread of typhoid fever, giving a detailed understanding of its dynamics. At the end, this study provides valuable insights and specific strategies for managing the disease in the Sheno town community.

Publisher

Public Library of Science (PLoS)

Reference24 articles.

1. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission;Pauline Van den Driessche;Mathematical biosciences,2002

2. Rahman, SM Ashrafur. "Study of infectious diseases by mathematical models: predictions and controls." PhD diss., The University of Western Ontario (Canada), 2016.

3. Mathematical Analysis of Two Strains Covid-19 Disease Using SEIR Model;Adetayo Samuel Eegunjobi;Journal of Mathematical & Fundamental Sciences,2022

4. analysis of covid-19 disease with careless infective using seitrs model;Oluwole Daniel Makinde;Asia Pacific Journal of Mathematics,2023

5. Modelling and stability analysis of Typhoid fever transmission dynamics with control strategies;Stephen Edward;International Journal of Sciences: Basic and Applied Research,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3