A hepatitis B virus (HBV) sequence variation graph improves alignment and sample-specific consensus sequence construction

Author:

Duchen DylanORCID,Clipman Steven J.,Vergara Candelaria,Thio Chloe L.,Thomas David L.,Duggal Priya,Wojcik Genevieve L.

Abstract

Nearly 300 million individuals live with chronic hepatitis B virus (HBV) infection (CHB), for which no curative therapy is available. As viral diversity is associated with pathogenesis and immunological control of infection, improved methods to characterize this diversity could aid drug development efforts. Conventionally, viral sequencing data are mapped/aligned to a reference genome, and only the aligned sequences are retained for analysis. Thus, reference selection is critical, yet selecting the most representative reference a priori remains difficult. We investigate an alternative pangenome approach which can combine multiple reference sequences into a graph which can be used during alignment. Using simulated short-read sequencing data generated from publicly available HBV genomes and real sequencing data from an individual living with CHB, we demonstrate alignment to a phylogenetically representative ‘genome graph’ can improve alignment, avoid issues of reference ambiguity, and facilitate the construction of sample-specific consensus sequences more genetically similar to the individual’s infection. Graph-based methods can, therefore, improve efforts to characterize the genetics of viral pathogens, including HBV, and have broader implications in host-pathogen research.

Funder

National Institutes of Health

National Human Genome Research Institute

Burroughs Wellcome Fund

Publisher

Public Library of Science (PLoS)

Reference86 articles.

1. Targets and future direct-acting antiviral approaches to achieve hepatitis B virus cure;T Asselah;The Lancet Gastroenterology & Hepatology,2019

2. Host Genetic Determinants of Hepatitis B Virus Infection;Z Zhang;Frontiers in Genetics,2019

3. Hepatitis B virus infection;C Trépo;The Lancet,2014

4. Large-scale viral genome analysis identifies novel clinical associations between hepatitis B virus and chronically infected patients;O Podlaha;Scientific Reports,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3