Performance of different nebulizers in clinical use for Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC)

Author:

Göhler DanielORCID,Oelschlägel KathrinORCID,Ouaissi MehdiORCID,Giger-Pabst UrsORCID

Abstract

Objective Technical ex-vivo comparison of commercial nebulizer nozzles used for Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC). Methods The performance of four different commercial nebulizer nozzles (Nebulizer; HurriChemTM; MCR-4 TOPOL®; QuattroJet) was analysed concerning: i) technical design and principle of operation, ii) operational pressure as function of the liquid flow rate, iii) droplet size distribution via laser diffraction spectrometry, iv) spray cone angle, spray cone form as well as horizontal drug deposition by image-metric analyses and v) chemical resistance via exposing to a cytostatic solution and chemical composition by means of spark optical emission spectral analysis. Results The Nebulizer shows quasi an identical technical design and thus also a similar performance (e.g., mass median droplet size of 29 μm) as the original PIPAC nozzles (MIP/ CapnoPen). All other nozzles show more or less a performance deviation to the original PIPAC nozzles. The HurriChemTM has a similar design and principle of operation as the Nebulizer, but provides a finer aerosol (22 μm). The principle of operation of MCR-4 TOPOL® and QuattroJet differ significantly from that of the original PIPAC nozzle technology. The MCR-4 TOPOL® offers a hollow spray cone with significantly larger droplets (50 μm) than the original PIPAC nozzles. The QuattroJet generates an aerosol (22 μm) similar to that of the HurriChemTM but with improved spatial drug distribution. Conclusion The availability of new PIPAC nozzles is encouraging but can also have a negative impact if their performance and efficacy is unknown. It is recommended that PIPAC nozzles that deviate from the current standard should be subject to bioequivalence testing and implementation in accordance with the IDEAL-D framework prior to routine clinical use.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3