Resilience analysis and improvement strategy of microgrid system considering new energy connection

Author:

Zhou Yongrong,Zhao Yan,Ma ZhaoxingORCID

Abstract

With the increasing demand for electricity, microgrid systems are facing issues such as insufficient backup capacity, frequent load switching, and frequent malfunctions, making research on microgrid resilience crucial, especially to improve system power supply reliability. This paper proposes a method for analyzing the resilience metric of new energy grid-connected microgrid system, and proposes optimization strategies to improve resilience. Firstly, a measurement method for the resilience of the microgrid system is established based on the operating characteristics of the system components. Secondly, the sensitivity relationship between system resilience and parameters is established, and an optimization model for resilience improvement strategies of microgrid systems based on parameter sensitivity is constructed. Finally, simulation verification is conducted based on the IEEE 37-node microgrid system. The results show that the proposed measurement method can scientifically and reasonably measure the resilience of the microgrid system, and the resilience improvement strategy significantly improves the operational resilience, verifying the effectiveness and robustness of the proposed analysis method.

Funder

State Key Laboratory Foundation of Technology and Equipment for Defense against Power System Operational Risks

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3