Artificial neural network, machine learning modelling of compressive strength of recycled coarse aggregate based self-compacting concrete

Author:

Jagadesh P.ORCID,Khan Afzal Hussain,Priya B. Shanmuga,Asheeka A.,Zoubir Zineb,Magbool Hassan M.,Alam Shamshad,Bakather Omer Y.

Abstract

This research study aims to understand the application of Artificial Neural Networks (ANNs) to forecast the Self-Compacting Recycled Coarse Aggregate Concrete (SCRCAC) compressive strength. From different literature, 602 available data sets from SCRCAC mix designs are collected, and the data are rearranged, reconstructed, trained and tested for the ANN model development. The models were established using seven input variables: the mass of cementitious content, water, natural coarse aggregate content, natural fine aggregate content, recycled coarse aggregate content, chemical admixture and mineral admixture used in the SCRCAC mix designs. Two normalization techniques are used for data normalization to visualize the data distribution. For each normalization technique, three transfer functions are used for modelling. In total, six different types of models were run in MATLAB and used to estimate the 28th day SCRCAC compressive strength. Normalization technique 2 performs better than 1 and TANSING is the best transfer function. The best k-fold cross-validation fold is k = 7. The coefficient of determination for predicted and actual compressive strength is 0.78 for training and 0.86 for testing. The impact of the number of neurons and layers on the model was performed. Inputs from standards are used to forecast the 28th day compressive strength. Apart from ANN, Machine Learning (ML) techniques like random forest, extra trees, extreme boosting and light gradient boosting techniques are adopted to predict the 28th day compressive strength of SCRCAC. Compared to ML, ANN prediction shows better results in terms of sensitive analysis. The study also extended to determine 28th day compressive strength from experimental work and compared it with 28th day compressive strength from ANN best model. Standard and ANN mix designs have similar fresh and hardened properties. The average compressive strength from ANN model and experimental results are 39.067 and 38.36 MPa, respectively with correlation coefficient is 1. It appears that ANN can validly predict the compressive strength of concrete.

Publisher

Public Library of Science (PLoS)

Reference127 articles.

1. A review on self-compacting concrete;P Arulsivanantham;International Journal of Chemical Technology Research,2017

2. Properties of self-compacting concrete using recycled coarse aggregate.;KC Panda;Procedia Engineering,2013

3. Structural engineering applications of recycled aggregate concrete: Seismic performance, guidelines, projects and demonstrations.;J Xiao;Case Studies in Construction Materials,2022

4. Effect of pores on the mechanical and durability properties on high strength recycled fine aggregate mortar.;MI Rebeca Martinez-Garcia;Case Studies in Construction Materials,2022

5. Impact of design parameters on the ratio of compressive to spilt tensile strength of self-compacting concrete with recycled aggregate.;Martinez-Garcia Rebeca;Materials,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3