Simulation of transient rolling resistance of bicycle tyres at various ambient temperatures

Author:

Hyttinen Jukka,Rothhämel MalteORCID,Jerrelind JennyORCID,Drugge Lars

Abstract

The range of an electrically assisted bicycle, which is constrained by the rider’s cycling ability and the battery capacity, is heavily influenced by rolling resistance. Furthermore, the magnitude of rolling resistance affects commuters’ motivation to decide whether to cycle or to choose another way to commute. This paper presents a way to simulate the transient rolling resistance of bicycle tyres as a function of ambient temperature. The significance of the change in driving resistance at different ambient temperatures is demonstrated through the range simulation of an electrically assisted bicycle at varying ambient temperatures. A representative driving cycle for bicycle commuters was created, enabling comparison of dynamic behaviour in a standardised set, to evaluate the effect of ambient temperature on the battery capacity and the increase in driving resistances. To the authors’ knowledge, this kind of model has not previously been created for bicycles. The model calculates tyre temperature based on the heat transfer, considering the heating—i. e., rolling resistance—and cooling effects—i. e., convective and radiative cooling. The decrease in tyre temperature results in an increase in rolling resistance and a decrease in the battery capacity, which was considered in the simulations. The results show significantly increased energy demand at a very low ambient temperature (down to −30°C) compared to + 20°C. The novelty of this article is simulating energy expenditure of bicycle dynamically as a function of ambient temperature. This model includes a temperature-dependent transient bicycle rolling resistance model as well as a battery capacity model. The findings provide researchers with a better comprehension of parameters affecting energy expenditure of bicycles at different ambient or tyre temperatures. The models can be used as a tool during the design process of bicycles to quantify the required battery capacities at different climates. In addition, traffic planners can use the model to assess the effect of changes in infrastructure on motivation to utilise bicycles.

Funder

VINNOVA

Publisher

Public Library of Science (PLoS)

Reference37 articles.

1. Daily walking and cycling to work: their utility as health-enhancing physical activity;P Oja;Patient education and counseling,1998

2. Assessing the potential for carbon emissions savings from replacing short car trips with walking and cycling using a mixed GPS-travel diary approach;A Neves;Transportation research Part A, Policy and practice,2019

3. An analysis of bicycle route choice preferences in Texas, US;I Sener;Transportation (Dordrecht),2009

4. Commuting by Bicycle: An Overview of the Literature;E Heinen;Transport Reviews,2010

5. Factors influencing the propensity to cycle to work;M Wardman;Transportation research Part A, Policy and practice,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3