Growable design of passenger vehicle interior space based on FAHP and FQFD

Author:

Liu Zongming,Chen Xuhui,Liang XinanORCID

Abstract

The increasingly shortened development cycle of smart vehicles has led to a qualitative shift in the nature of automotive products. Growing spatial design of vehicle interiors can effectively satisfy users’ personalisation preferences and increase their willingness to buy, as well as mitigating the environmental pollution caused by the problem of rapid replacement. Considering the subjectivity and uncertainty of users’ emotional needs, this study adopts the FAHP method to comprehensively analyse and rank the SET series of factors, then combines the grey correlation method with the correlation analysis of the areas related to the interior space of the automobile, constructs the sample of the interior space of the automobile and extracts the kansei words of the space sample. Intentional vocabulary mean scores were calculated to factor analyses through kansei engineering, next the fuzzy QFD quality house was built to make affective semantic design associations and derive design weights, which are then used to guide the design and ultimately realise the design of a dynamic automotive interaction scenario. The results of the study show that the integration of different theories can reduce the uncertainties in accessing users’ emotional needs. At the same time, it can provide systematic guidance for the interaction design of a growable automobile in terms of multiple dimensions of interior space connectivity, spatial layout, and perceptual experience, as well as provide valuable suggestions for the subsequent development of interior spaces.

Publisher

Public Library of Science (PLoS)

Reference32 articles.

1. Research on Energy Consumption of Automobile Manufacturing Enterprises in Beijing.;Y. Xiong;Beijing University of Technology,2013

2. Analysis of Product Design with Growth Potential;M. Liu Z;Decoration,2012

3. Implementing sustainable design theory in business practice: A call to action;B Brian;Journal of cleaner production,2020

4. Secured Vehicle Life Cycle Tracking Using Blockchain and Smart Contract;Umamakeswari Arumugam Srinivasan Ananthanarayanan Bragadeesh;Computer Systems: Science & Engineering,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3