Cotton seed cultivar identification based on the fusion of spectral and textural features

Author:

Liu XiaoORCID,Guo PengORCID,Xu QuanORCID,Du Wenling

Abstract

The mixing of cotton seeds of different cultivars and qualities can lead to differences in growth conditions and make field management difficult. In particular, except for yield loss, it can also lead to inconsistent cotton quality and poor textile product quality, causing huge economic losses to farmers and the cotton processing industry. However, traditional cultivar identification methods for cotton seeds are time-consuming, labor-intensive, and cumbersome, which cannot meet the needs of modern agriculture and modern cotton processing industry. Therefore, there is an urgent need for a fast, accurate, and non-destructive method for identifying cotton seed cultivars. In this study, hyperspectral images (397.32 nm—1003.58 nm) of five cotton cultivars, namely Jinke 20, Jinke 21, Xinluzao 64, Xinluzao 74, and Zhongmiansuo 5, were captured using a Specim IQ camera, and then the average spectral information of seeds of each cultivar was used for spectral analysis, aiming to estab-lish a cotton seed cultivar identification model. Due to the presence of many obvious noises in the < 400 nm and > 1000 nm regions of the collected spectral data, spectra from 400 nm to 1000 nm were selected as the representative spectra of the seed samples. Then, various denoising techniques, including Savitzky-Golay (SG), Standard Normal Variate (SNV), and First Derivative (FD), were applied individually and in combination to improve the quality of the spectra. Additionally, a successive projections algorithm (SPA) was employed for spectral feature selection. Based on the full-band spectra, a Partial Least Squares-Discriminant Analysis (PLS-DA) model was established. Furthermore, spectral features and textural features were fused to create Random Forest (RF), Convolutional Neural Network (CNN), and Extreme Learning Machine (ELM) identification models. The results showed that: (1) The SNV-FD preprocessing method showed the optimal denoising performance. (2) SPA highlighted the near-infrared region (800–1000 nm), red region (620–700 nm), and blue-green region (420–570 nm) for identifying cotton cultivar. (3) The fusion of spectral features and textural features did not consistently improve the accuracy of all modeling strategies, suggesting the need for further research on appropriate modeling strategies. (4) The ELM model had the highest cotton cultivar identification accuracy, with an accuracy of 100% for the training set and 98.89% for the test set. In conclusion, this study successfully developed a highly accurate cotton seed cultivar identification model (ELM model). This study provides a new method for the rapid and non-destructive identification of cotton seed cultivars, which will help ensure the cultivar consistency of seeds used in cotton planting, and improve the overall quality and yield of cotton.

Funder

National Natural Science Foundation of China

Science and Technology Department of Xinjiang Uygur Autonomous Region

Publisher

Public Library of Science (PLoS)

Reference54 articles.

1. Near-infrared hyperspectral imaging combined with deep learning to identify cotton seed varieties;S Zhu;Molecules,2019

2. DNA Fingerprinting for identification of rice varieties and seed genetic purity assessment;V Satturu;Agric Res,2018

3. Plant variety and cultivar identification: advances and prospects;NK Korir;Crit Rev Biotechnol,2013

4. Huang DY. Study on Identification Method of Delinted Cottonseeds Varieties Based on Hyperspectral Image Technology. M.Sc. Thesis, Shihezi University, 2018.

5. Progress in research on rapid and non-destructive detection of seed quality based on spectroscopy and imaging technology;H Wang;Spectrosc SpectAnal,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3